Fluorescence microscope
What is a Fluorescence Microscope?
A fluorescence microscope is basically a conventional light microscope with added features and components that extend its capabilities.
- A conventional microscope uses light to illuminate the sample and produce a magnified image of the sample.
- A fluorescence microscope uses a much higher intensity light to illuminate the sample. This light excites fluorescence species in the sample, which then emit light of a longer wavelength. A fluorescent microscope also produces a magnified image of the sample, but the image is based on the second light source -- the light emanating from the fluorescent species -- rather than from the light originally used to illuminate, and excite, the sample.
In most cases, a component of interest in the specimen is specifically labeled with a fluorescent molecule called a fluorophore (such as green fluorescent protein (GFP), fluorescein or DyLight 488). The specimen is illuminated with light of a specific wavelength (or wavelengths) which is absorbed by the fluorophores, causing them to emit longer wavelengths of light (of a different color than the absorbed light). The illumination light is separated from the much weaker emitted fluorescence through the use of an emission filter. Typical components of a fluorescence microscope are the light source (xenon arc lamp or mercury-vapor lamp), the excitation filter, the dichroic mirror (or dichromatic beamsplitter), and the emission filter (see figure below). The filters and the dichroic are chosen to match the spectral excitation and emission characteristics of the fluorophore used to label the specimen. In this manner, a single fluorophore (color) is imaged at a time. Multi-color images of several fluorophores must be composed by combining several single-color images.
0 Response to "Fluorescence microscope"
Post a Comment